

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DATA STRUCTURES LAB

MANUAL

(R22A0583)

B.TECH CSE

(II YEAR – I SEM)

(2024-25)

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
(Autonomous Institution – UGC, Govt. of India)

Recognized under 2(f) and 12 (B) of UGC ACT 1956
(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA &

NAAC – ‘A’ Grade - ISO 9001:2015 Certified)
Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100,

Telangana State, India

Name :

Roll no:

Section:

Year :

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Vision

To acknowledge quality education and instill high patterns of discipline making the

students technologically superior and ethically strong which involves the

improvement in the quality of life in human race.

Mission

 To achieve and impart holistic technical education using the best of infrastructure,

outstanding technical and teaching expertise to establish the students in to competent

and confident engineers.

 Evolving the center of excellence through creative and innovative teaching learning

practices for promoting academic achievement to produce internationally accepted

competitive and world class professionals.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1 – ANALYTICAL SKILLS

 To facilitate the graduates with the ability to visualize, gather information, articulate, analyze,

solve complex problems, and make decisions. These are essential to address thechallenges of
complex and computation intensive problems increasing their productivity.

PEO2 – TECHNICAL SKILLS

 To facilitate the graduates with the technical skills that prepare them for immediate
employment and pursue certification providing a deeper understanding of the technology in

advanced areas of computer science and related fields, thus encouraging to pursue higher

education and research based on their interest.

PEO3 – SOFT SKILLS
 To facilitate the graduates with the soft skills that include fulfilling the mission, setting goals,

showing self-confidence by communicating effectively, having a positive attitude, get
involved in team-work, being a leader, managing their career and their life.

PEO4 – PROFESSIONAL ETHICS

 To facilitate the graduates with the knowledge of professional and ethical responsibilities by
paying attention to grooming, being conservative with style, following dress codes, safety
codes, and adapting themselves to technological advancements.

PROGRAM SPECIFIC OUTCOMES (PSOs)

After the completion of the course, B. Tech Computer Science andEngineering,

the graduates will have the following Program Specific Outcomes:

1. Fundamentals and critical knowledge of the Computer System:- Able to

Understand the working principles of the computer System and its components ,

Apply the knowledge to build, asses, and analyze the software and hardware

aspects of it .

2. The comprehensive and Applicative knowledge of Software Development:

Comprehensive skills of Programming Languages, Software process models,

methodologies, and able to plan, develop, test, analyze, and managethe software

and hardware intensive systems in heterogeneous platforms individually or

working in teams.

3. Applications of Computing Domain & Research: Able to use the professional,

managerial, interdisciplinary skill set, and domain specific tools in development

processes, identify the research gaps, and provide innovative solutions to them.

PROGRAM OUTCOMES (POs)

Engineering Graduates should possess the following:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

3. Design / development of solutions: Design solutions for complex engineering problems and

design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis of

the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities

with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant

to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need

for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader

in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and

write effective reports and design documentation, make effective presentations, and give and

receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multi disciplinary environments.

12 .Life- long learning: Recognize the need for,and have the preparation and ability to engage

in independent and life-long learning in the broadest context of technological change.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

Maisammaguda, Dhulapally Post, Via Hakimpet, Secunderabad –

500100

GENERAL LABORATORY INSTRUCTIONS

1. Students are advised to come to the laboratory at least 5 minutes before (to the starting

time), those who come after 5 minutes will not be allowed into the lab.

2. Plan your task properly much before to the commencement, come prepared to the labwith

the synopsis / program / experiment details.

3. Student should enter into the laboratory with:

a. Laboratory observation notes with all the details (Problem statement, Aim,

Algorithm, Procedure, Program, Expected Output, etc.,) filled in for the lab session.

b. Laboratory Record updated up to the last session experiments and other utensils (if

any) needed in the lab.

c. Proper Dress code and Identity card.

4. Sign in the laboratory login register, write the TIME-IN, and occupy the computer system

allotted to you by the faculty.

5. Execute your task in the laboratory, and record the results / output in the lab observation

note book, and get certified by the concerned faculty.

6. All the students should be polite and cooperative with the laboratory staff, must maintain

the discipline and decency in the laboratory.

7. Computer labs are established with sophisticated and high end branded systems, which

should be utilized properly.

8. Students / Faculty must keep their mobile phones in SWITCHED OFF mode during the lab

sessions. Misuse of the equipment, misbehaviors with the staff and systems etc., will attract

severe punishment.

9. Students must take the permission of the faculty in case of any urgency to go out; if

anybody found loitering outside the lab / class without permission during workinghours

will be treated seriously and punished appropriately.

10. Students should LOG OFF/ SHUT DOWN the computer system before he/she leaves the

lab after completing the task (experiment) in all aspects. He/she must ensure the system / seat

is kept properly.

HEAD OF THE DEPARTMENT PRINCIPAL

INDEX

S.No Name of the program Page

No

Data Structures Lab 2024-2025

1. Write a Python program for class, Flower, that has three instance variables of type str,

int, and float, that respectively represent the name of the flower, its number of petals, and

its price. Your class must include a constructor method that initializes each variable to an

appropriate value, and your class should include methods for setting the value of each type,

and retrieving the value of each type.

Program:

Department of CSE Page 1

class Flower:

#Common base class for all Flowers
def init (self, petalName, petalNumber, petalPrice):

self.name = petalName

self.petals = petalNumber

self.price = petalPrice

def setName(self, petalName):

self.name = petalName

def setPetals(self, petalNumber):

self.petals = petalNumber

def setPrice(self, petalPrice):

self.price = petalPrice

def getName(self):

return self.name

def getPetals(self):

return self.petals

def getPrice(self):

return self.price

#This would create first object of Flower class

f1 = Flower("Sunflower", 2, 1000)

print ("Flower Details:")

print ("Name: ", f1.getName())

print ("Number of petals:", f1.getPetals())

print ("Price:",f1.getPrice())

print ("\n")

#This would create second object of Flower class

f2 = Flower("Rose", 5, 2000)

f2.setPrice(3333)

f2.setPetals(6)

print ("Flower Details:")

print ("Name: ", f2.getName())

print ("Number of petals:", f2.getPetals())

print ("Price:",f2.getPrice())

Data Structures Lab 2024-2025

Output:

Signature of the Faculty

Department of CSE Page 2

Data Structures Lab 2024-2025

Exercise Programs:

Department of CSE Page 3

Data Structures Lab 2024-2025

Department of CSE Page 4

from abc import abstractmethod, ABCMeta

import math

class Polygon(metaclass = ABCMeta):

def init (self, side_lengths = [1,1,1],

self._side_lengths = side_lengths

self._num_sizes = 3

num_sides = 3):

@abstractmethod

def area(self):

pass

@abstractmethod

def perimeter(self):

pass

def repr (self):

return (str(self._side_lengths))

class Triangle(Polygon):

def init (self, side_lengths):

super(). init (side_lengths, 3)

self._perimeter = self.perimeter()

self._area = self.area()

def perimeter(self):

return(sum(self._side_lengths))

def area(self):

#Area of Triangle
s = self._perimeter/2

product = s

for i in self._side_lengths:

product*=(s-i)

return product**0.5

class Quadrilateral(Polygon):

def init (self, side_lengths):

super(). init (side_lengths, 4)

self._perimeter = self.perimeter()

Data Structures Lab 2024-2025

2. Develop an inheritance hierarchy based upon a Polygon class that has abstract methods

area() and perimeter(). Implement classes Triangle, Quadrilateral, Pentagon, that extend

this base class, with the obvious meanings for the area() and perimeter() methods. Write

a simple program that allows users to create polygons of the various types and input their

geometric dimensions, and the program then outputs their area and perimeter.

Program:

Department of CSE Page 5

Data Structures Lab 2024-2025

Output:

Signature of the Faculty

Department of CSE Page 6

self._area = self.area()

def perimeter(self):

return(sum(self._side_lengths))

def area(self):

Area of an irregular Quadrilateral

semiperimeter = sum(self._side_lengths) / 2

return math.sqrt((semiperimeter - self._side_lengths[0]) *

(semiperimeter - self._side_lengths[1]) *

(semiperimeter - self._side_lengths[2]) *

(semiperimeter - self._side_lengths[3]))

class Pentagon(Polygon):

def init (self, side_lengths):

super(). init (side_lengths, 5)

self._perimeter = self.perimeter()

self._area = self.area()

def perimeter(self):

return((self._side_lengths) * 5)

def area(self):

Area of a regular Pentagon

a = self._side_lengths

return (math.sqrt(5 * (5 + 2 * (math.sqrt(5)))) * a * a) /

4

#object of Triangle

t1 = Triangle([1,2,2])

print(t1.perimeter(),

t1.area())

#object of Quadrilateral

q1 = Quadrilateral([1,1,1,1])

print(q1.perimeter(),

q1.area())

Data Structures Lab 2024-2025

Exercise Programs:

Department of CSE Page 7

Data Structures Lab 2024-2025

3. Write a python program to implement method overloading and method overriding.

Method Overloading

Method overloading is an OOPS concept which provides ability to have several methods

having the same name with in the class where the methods differ in types or number of

arguments passed.

Method overloading in Python

Method overloading in its traditional sense (as defined above) as exists in other languages
like method overloading in Java doesn’t exist in Python.

In Python if you try to overload a function by having two or more functions having the same

name but different number of arguments only the last defined function is recognized, calling

any other overloaded function results in an error.

Achieving method overloading

Since using the same method name again to overload the method is not possible in Python, so

achieving method overloading in Python is done by having a single method with several

parameters. Then you need to check the actual number of arguments passed to the method

and perform the operation accordingly.

Program:

Output:

Department of CSE Page 8

class OverloadDemo:
sum method with default as None for parameters

def sum(self, a=None, b=None, c=None):

When three params are passed
if a!=None and b!=None and c!=None:

s = a + b + c

print('Sum = ', s)

When two params are passed

elif a!=None and b!=None:

s = a + b

print('Sum = ', s)

od = OverloadDemo()

od.sum(7, 8)

od.sum(7, 8, 9)

Data Structures Lab 2024-2025

Method overriding - Polymorphism through inheritance

Method overriding provides ability to change the implementation of a method in a child class

which is already defined in one of its super class. If there is a method in a super class and

method having the same name and same number of arguments in a child class then the child

class method is said to be overriding the parent class method.

When the method is called with parent class object, method of the parent class is executed.

When method is called with child class object, method of the child class is executed. So the

appropriate overridden method is called based on the object type, which is an example of

Polymorphism.

Program:

Output:

Department of CSE Page 9

class Person:
def init (self, name, age):

self.name = name

self.age = age

def displayData(self):

print('In parent class displayData method')

print(self.name)

print(self.age)

class Employee(Person):

def init (self, name, age, id):

calling constructor of super class

super(). init (name, age)

self.empId = id

def displayData(self):

print('In child class displayData method')

print(self.name)

print(self.age)

print(self.empId)

#Person class object

person = Person('Karthik Shaurya', 26)

person.displayData()

#Employee class object

emp = Employee(''Karthik Shaurya', 26, 'E317')

emp.displayData()

Data Structures Lab 2024-2025

Signature of the Faculty

Department of CSE Page 10

Data Structures Lab 2024-2025

4. Write a program for Linear Search and Binary search

Linear Search Program:

Output:

Department of CSE Page 11

def linearSearch(target, List):

position = 0

global iterations

iterations = 0

while position < len(List):

iterations += 1

if target == List[position]:

return position

position += 1

return -1

if name == ' main ':

List = [1, 2, 3, 4, 5, 6, 7, 8]

target = 3
answer = linearSearch(target, List)

if answer != -1:

print('Target found at index :', answer, 'in',

iterations,'iterations')

else:

print('Target not found in the list')

Data Structures Lab 2024-2025

Binary Search Program:

Output:

Signature of the Faculty

Department of CSE Page 12

def binarySearch(target, List):

left = 0

right = len(List) - 1

global iterations

iterations = 0

while left <= right:

iterations += 1

mid = (left + right) // 2

if target == List[mid]:

return mid
elif target < List[mid]:

right = mid - 1

else:

left = mid + 1

return -1

if name == ' main ':

List = [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14]

target = 12

answer = binarySearch(target, List)

if(answer != -1):

print('Target',target,'found at position', answer, 'in',

iterations,'iterations')

else:

print('Target not found')

Data Structures Lab 2024-2025

Exercise Programs:

Department of CSE Page 13

Data Structures Lab 2024-2025

5. Write a program to implement Bubble Sort and Selection Sort

Bubble Sort Program:

Output:

Selection Sort Program:

Output:

Signature of the Faculty

Department of CSE Page 14

def bubble_sort(alist):
for i in range(len(alist) - 1, 0, -1):

no_swap = True

for j in range(0, i):

if alist[j + 1] < alist[j]:

alist[j], alist[j + 1] = alist[j + 1], alist[j]

no_swap = False

if no_swap:
return

alist = input('Enter the list of numbers: ').split()

alist = [int(x) for x in alist]

bubble_sort(alist)

print('Sorted list: ', alist)

def selection_sort(alist):
for i in range(0, len(alist) - 1):

smallest = i

for j in range(i + 1, len(alist)):

if alist[j] < alist[smallest]:

smallest = j

alist[i], alist[smallest] = alist[smallest], alist[i]

alist = input('Enter the list of numbers: ').split()

alist = [int(x) for x in alist]

selection_sort(alist)

print('Sorted list: ', alist)

Data Structures Lab 2024-2025

Exercise Programs:

Department of CSE Page 15

def merge_sort(alist, start, end):
'''Sorts the list from indexes start to end

if end - start > 1:

mid = (start + end)//2

merge_sort(alist, start, mid)

merge_sort(alist, mid, end)

merge_list(alist, start, mid, end)

- 1 inclusive.'''

def merge_list(alist, start, mid, end):

left = alist[start:mid]

right = alist[mid:end]

k = start

i = 0

j = 0
while (start + i < mid and mid + j < end):

if (left[i] <= right[j]):

alist[k] = left[i]

i = i + 1

else:

alist[k] = right[j]
j = j + 1

k = k + 1

if start + i < mid:

while k < end:

alist[k] = left[i]

i = i + 1

k = k + 1

else:

while k < end:

alist[k] = right[j]

j = j + 1

k = k + 1

alist = input('Enter the list of numbers: ').split()

alist = [int(x) for x in alist]

merge_sort(alist, 0, len(alist))

print('Sorted list: ', alist)

Data Structures Lab 2024-2025

6. Write a program to implement Merge sort and Quick sort

Merge Sort Program:

Output:

Signature of the Faculty

Department of CSE Page 16

Data Structures Lab 2024-2025

Quick Sort Program:

Output:

Department of CSE Page 17

def quicksort(alist, start, end):
'''Sorts the list from indexes start to end - 1 inclusive.'''

if end - start > 1:

p = partition(alist, start, end)

quicksort(alist, start, p)

quicksort(alist, p + 1, end)

def partition(alist, start, end):

pivot = alist[start]

i = start + 1

j = end - 1

while True:

while (i <= j and alist[i] <= pivot):

i = i + 1

while (i <= j and alist[j] >= pivot):

j = j - 1

if i <= j:

alist[i], alist[j] = alist[j], alist[i]

else:

alist[start], alist[j] = alist[j], alist[start]

return j

alist = input('Enter the list of numbers: ').split()

alist = [int(x) for x in alist]

quicksort(alist, 0, len(alist))

print('Sorted list: ', alist)

Data Structures Lab 2024-2025

Signature of the Faculty

Department of CSE Page 18

Custom stack implementation in Python

class Stack:

Constructor to initialize the stack

def init (self, size):

self.arr = [None] * size

self.capacity = size

self.top = -1

Function to add an element `x` to the stack

def push(self, x):

if self.isFull():

print("Stack Overflow!! Calling exit()…")
exit(1)

print("Inserting", x, "into the stack…")

self.top = self.top + 1

self.arr[self.top] = x

Function to pop a top element from the

def pop(self):

check for stack underflow

if self.isEmpty():

print("Stack Underflow!! Calling

exit(1)

stack

exit()…")

print("Removing", self.peek(), "from the stack")

#decrease stack size by 1 and (optionally) return the popped element

top = self.arr[self.top]

self.top = self.top - 1

return top

Function to return the top element of the stack

def peek(self):

if self.isEmpty():

exit(1)

return self.arr[self.top]

Function to return the size of the stack

def size(self):

return self.top + 1

Function to check if the stack is empty or not

def isEmpty(self):

return self.size() == 0

Data Structures Lab 2024-2025

7. Write a program to implement Stacks and Queues

Stack Program:

Department of CSE Page 19

check if the stack is empty

if stack.isEmpty():

print("The stack is empty")

else:

print("The stack is not empty")

removing the top element (3) stack.pop()

print("Top element is", stack.peek())

print("The stack size is", stack.size())

Inserting 3 in the stack stack.push(3)

removing the top element (2)

removing the top element (1)

stack.pop()

stack.pop()

Inserting 1 in the stack

Inserting 2 in the stack

stack.push(1)

stack.push(2)

if name == ' main ':

stack = Stack(3)

Function to check if the stack is full or not

def isFull(self):

return self.size() == self.capacity

Data Structures Lab 2024-2025

Output:

Department of CSE Page 20

Data Structures Lab 2024-2025

Department of CSE Page 21

Data Structures Lab 2024-2025

Queue Program:

Custom queue implementation in Python

class Queue:

Initialize queue

def init (self, size):

self.q = [None] * size # list to store queue elements

self.capacity = size # maximum capacity of the queue

self.front = 0 # front points to the front element in the queue

self.rear = -1 # rear points to the last element in the queue

self.count = 0 # current size of the queue

Function to dequeue the front element

def pop(self):

check for queue underflow

if self.isEmpty():

print("Queue Underflow!! Terminating process.")

exit(1)

print("Removing element…", self.q[self.front])

self.front = (self.front + 1) % self.capacity

self.count = self.count - 1

Function to add an element to the queue

def append(self, value):

check for queue overflow

if self.isFull():

print("Overflow!! Terminating process.")

exit(1)

print("Inserting element…", value)

self.rear = (self.rear + 1) % self.capacity

self.q[self.rear] = value

self.count = self.count + 1

Function to return the front element of the queue

def peek(self):

if self.isEmpty():

print("Queue UnderFlow!! Terminating process.")

exit(1)

return self.q[self.front]

Function to return the size of the queue

def size(self):

return self.count

Department of CSE Page 22

Data Structures Lab 2024-2025

Output:

Department of CSE Page 23

Function to check if the queue is empty or notdef

isEmpty(self):

return self.size() == 0

Function to check if the queue is full or notdef

isFull(self):

return self.size() == self.capacity

if name == ' main ':

create a queue of capacity 5q =

Queue(5)

q.append(1)

q.append(2)

q.append(3)

print("The queue size is", q.size())

print("The front element is", q.peek())

q.pop()

print("The front element is", q.peek())

q.pop()

q.pop()

if q.isEmpty():

print("The queue is empty")

else:

print("The queue is not empty")

Data Structures Lab 2024-2025

Signature of the Faculty

Department of CSE Page 24

Data Structures Lab 2024-2025

8. Write a program to implement Singly Linked List

Program:

Department of CSE Page 25

import os

from typing import NewType

class _Node:

'''

Creates a Node with two fields:

1. element (accesed using ._element)
2. link (accesed using ._link)
'''

 slots = '_element', '_link'

def init (self, element, link):

'''

Initialses _element and _link with element and link respectively.

'''
self._element = element

self._link = link

class LinkedList:

'''

Consists of member funtions to perform different

operations on the linked list.

'''

def init (self):

'''

Initialses head, tail and size with None, None and 0 respectively.

'''
self._head = None

self._tail = None

self._size = 0

def len (self):

'''

Returns length of linked list

'''

return self._size

def isempty(self):

'''

Returns True if linked list is empty, otherwise False.

'''

return self._size == 0

def addLast(self, e):

'''

Data Structures Lab 2024-2025

Adds the passed element at the end of the linked list.

'''

newest = _Node(e, None)

if self.isempty():

self._head = newest

else:

self._tail._link = newest

self._tail = newest

self._size += 1

def addFirst(self, e):

'''

Adds the passed element at the beginning of the linked list.

'''

newest = _Node(e, None)

if self.isempty():

self._head = newest

self._tail = newest

else:

newest._link = self._head

self._head = newest

self._size += 1

def addAnywhere(self, e, index):

'''

Adds the passed element at the passed index position of the linked list.

'''

newest = _Node(e, None)

i = index - 1

p = self._head

if self.isempty():

self.addFirst(e)

else:

for i in range(i):

p = p._link

newest._link = p._link

p._link = newest

print(f"Added Item at index {index}!\n\n")

self._size += 1

def removeFirst(self):

'''

Removes element from the beginning of the linked list.

Returns the removed element.

'''

if self.isempty():

print("List is Empty. Cannot perform deletion

operation.")

return

Department of CSE Page 26

Data Structures Lab 2024-2025

e = self._head._element

self._head = self._head._link

self._size = self._size - 1

if self.isempty():

self._tail = None

return e

def removeLast(self):

'''

Removes element from the end of the linked list.

Returns the removed element.

'''

if self.isempty():

print("List is Empty. Cannot perform deletion

operation.")

return

p = self._head

if p._link == None:

e = p._element

self._head = None

else:

while p._link._link != None:

p = p._link

e = p._link._element

p._link = None

self._tail = p

self._size = self._size - 1

return e

def removeAnywhere(self, index):

'''
Removes element from the passed index position of the linked list.

Returns the removed element.

'''
p = self._head

i = index - 1

if index == 0:

return self.removeFirst()

elif index == self._size - 1:

return self.removeLast()

else:

for x in range(i):

p = p._link

e = p._link._element

p._link = p._link._link

self._size -= 1

return e

Department of CSE Page 27

Data Structures Lab 2024-2025

def display(self):

Utility function to display the linked list.

'''

if self.isempty() == 0:

p = self._head

while p:

print(p._element, end='-->')

p = p._link

print("NULL")

else:

print("Empty")

def search(self, key):

'''

Searches for the passed element in the linked list.

Returns the index position if found, else -1.

'''

p = self._head

index = 0

while p:

if p._element == key:

return index

p = p._link

index += 1

return -1

def options():

'''

Prints Menu for operations

'''

options_list = ['Add Last', 'Add First', 'Add Anywhere',
'Remove First', 'Remove Last', 'Remove Anywhere',

'Display List', 'Print Size', 'Search', 'Exit']

print("MENU")

for i, option in enumerate(options_list):

print(f'{i + 1}. {option}')

choice = int(input("Enter choice: "))

return choice

def switch_case(choice):

'''

Switch Case for operations

'''

if choice == 1:

elem = int(input("Enter Item: "))

L.addLast(elem)

print("Added Item at Last!\n\n")

elif choice == 2:

elem = int(input("Enter Item: "))

L.addFirst(elem)

print("Added Item at First!\n\n")

Department of CSE Page 28

Data Structures Lab 2024-2025

Output:

Department of CSE Page 29

elif choice == 3:

elem = int(input("Enter Item: "))

index = int(input("Enter Index: "))

L.addAnywhere(elem, index)

elif choice == 4:

print("Removed Element from First:", L.removeFirst())

elif choice == 5:

print("Removed Element from last:", L.removeLast())

elif choice == 6:

index = int(input("Enter Index: "))

print(f"Removed Item: {L.removeAnywhere(index)} !\n\n")

elif choice == 7:

print("List: ", end='')

L.display()

print("\n")

elif choice == 8:

print("Size:", len(L))

print("\n")

elif choice == 9:

key = int(input("Enter item to search: "))

if L.search(key) >= 0:

print(f"Item {key} found at index position

{L.search(key)}\n\n")

else:

print("Item not in the list\n\n")

elif choice == 10:

import sys

sys.exit()

if name == ' main ':

L = LinkedList()

while True:

choice = options()

switch_case(choice)

Data Structures Lab 2024-2025

Signature of the Faculty

Department of CSE Page 30

Data Structures Lab 2024-2025

Exercise Programs:

Department of CSE Page 31

Data Structures Lab 2024-2025

Department of CSE Page 32

Data Structures Lab 2024-2025

9. Write a program to implement Doubly Linked list

Program:

Department of CSE Page 33

import os

class _Node:

'''

Creates a Node with three fields:

1. element (accessed using ._element)

2. link (accessed using ._link)
3. prev (accessed using ._prev)
'''

 slots = '_element', '_link', '_prev'

def init (self, element, link, prev):

'''
Initialses _element, _link and _prev with element, link and prev respectively.

'''
self._element = element

self._link = link

self._prev = prev

class DoublyLL:

'''

Consists of member funtions to perform different

operations on the doubly linked list.

'''

def init (self):

'''

Initialises head, tail and size with None, None and 0 respectively.

'''
self._head = None

self._tail = None

self._size = 0

def len (self):

'''

Returns length of linked list

'''

return self._size

def isempty(self):

'''

Returns True if doubly linked list is empty, otherwise False.

'''

return self._size == 0

def addLast(self, e):

'''

Adds the passed element at the end of the doubly linked list.

'''

Data Structures Lab 2024-2025

newest = _Node(e, None, None)

if self.isempty():

self._head = newest

else:

self._tail._link = newest

newest._prev = self._tail

self._tail = newest

self._size += 1

def addFirst(self, e):

'''

Adds the passed element at the beginning of the doubly linked list.

'''

newest = _Node(e, None, None)

if self.isempty():

self._head = newest

self._tail = newest

else:

newest._link = self._head

self._head._prev = newest

self._head = newest

self._size += 1

def addAnywhere(self, e, index):

'''

Adds the passed element at the passed index position of the

doubly linked list.

'''

if index >= self._size:

print(f'Index value out of range, it should be between

0 - {self._size - 1}')

elif self.isempty():

print("List was empty, item will be added at the end")

self.addLast(e)

elif index == 0:

self.addFirst(e)

elif index == self._size - 1:

self.addLast(e)

else:

newest = _Node(e, None, None)

p = self._head

for _ in range(index - 1):

p = p._link

newest._link = p._link

p._link._prev = newest

newest._prev = p

p._link = newest

self._size += 1

def removeFirst(self):

'''

Removes element from the beginning of the doubly linked list.

Returns the removed element.

'''

Department of CSE Page 34

Data Structures Lab 2024-2025

if self.isempty():

print('List is already empty')

return

e = self._head._element

self._head = self._head._link

self._size -= 1

if self.isempty():

self._tail = None

else:

self._head._prev = None

return e

def removeLast(self):

'''

Removes element from the end of the doubly linked list.

Returns the removed element.

'''

if self.isempty():
print("List is already empty")

return

e = self._tail._element

self._tail = self._tail._prev

self._size -= 1

if self.isempty():

self._head = None

else:

self._tail._link = None

return e

def removeAnywhere(self, index):

'''

Removes element from the passed index position of the

doubly linked list.

Returns the removed element.

'''

if index >= self._size:

print(f'Index value out of range, it should be between

0 - {self._size - 1}')

elif self.isempty():

print("List is empty")

elif index == 0:

return self.removeFirst()

elif index == self._size - 1:

return self.removeLast()

else:

p = self._head

for _ in range(index - 1):

p = p._link

e = p._link._element

p._link = p._link._link

p._link._prev = p

self._size -= 1

return e

Department of CSE Page 35

Data Structures Lab 2024-2025

def display(self):

'''

Utility function to display the doubly linked list.

'''

if self.isempty():

print("List is Empty")

return

p = self._head

print("NULL<-->", end='')

while p:

print(p._element, end="<-->")

p = p._link

print("NULL")

print(f"\nHead : {self._head._element}, Tail :

{self._tail._element}")

def options():

'''

Prints Menu for operations

'''

options_list = ['Add Last', 'Add First', 'Add Anywhere',
'Remove First', 'Remove Last', 'Remove Anywhere',

'Display List', 'Exit']

print("MENU")
for i, option in enumerate(options_list):

print(f'{i + 1}. {option}')

choice = int(input("Enter choice: "))

return choice

def switch_case(choice):

'''

Switch Case for operations

'''

os.system('cls')

if choice == 1:

elem = int(input("Enter Item: "))

DL.addLast(elem)

print("Added Item at Last!\n\n")

elif choice == 2:

elem = int(input("Enter Item: "))

DL.addFirst(elem)

print("Added Item at First!\n\n")

elif choice == 3:

elem = int(input("Enter Item: "))

index = int(input("Enter Index: "))

DL.addAnywhere(elem, index)

Department of CSE Page 36

Data Structures Lab 2024-2025

Output:

Department of CSE Page 37

elif choice == 4:

print("Removed Element from First:", DL.removeFirst())

elif choice == 5:

print("Removed Element from last:", DL.removeLast())

elif choice == 6:

index = int(input("Enter Index: "))

print(f"Removed Item: {DL.removeAnywhere(index)} !\n\n")

elif choice == 7:

print("List:")

DL.display()

print("\n")

elif choice == 8:

import sys

sys.exit()

if name == ' main ':

DL = DoublyLL()

while True:

choice = options()

switch_case(choice)

Data Structures Lab 2024-2025

Signature of the Faculty

Department of CSE Page 38

Data Structures Lab 2024-2025

Exercise Programs:

Department of CSE Page 39

Data Structures Lab 2024-2025

Department of CSE Page 40

Data Structures Lab 2024-2025

10 . A.Write a python program to implement DFS & BFS graph traversal

Techniques BREADTH FIRST SEARCH TRAVERSAL
Python3 Program to print BFS traversal

from a given source vertex. BFS(int s)

traverses vertices reachable from s.

from collections import defaultdict

This class represents a directed graph

using adjacency list representation

class Graph:

Constructor

def init (self):

default dictionary to store graph

self.graph = defaultdict(list)

function to add an edge to graph

Make a list visited[] to check if a node is already visited or not

def addEdge(self,u,v):

self.graph[u].append(v)

self.visited=[]

Function to print a BFS of graph

def BFS(self, s):

Create a queue for BFS

queue = []

Add the source node in

visited and enqueue it

queue.append(s)

self.visited.append(s)

while queue:

Dequeue a vertex from

queue and print it

s = queue.pop(0)

print (s, end = " ")

Get all adjacent vertices of the

dequeued vertex s. If a adjacent

has not been visited, then add it

in visited and enqueue it

for i in self.graph[s]:

if i not in visited:

queue.append(i)

self.visited.append(s)

Department of CSE Page 41

Data Structures Lab 2024-2025

Driver code

Create a graph given in

the above diagram

g = Graph()

g.addEdge(0, 1)

g.addEdge(0, 2)

g.addEdge(1, 2)

g.addEdge(2, 0)

g.addEdge(2, 3)

g.addEdge(3, 3)

print ("Following is Breadth First Traversal"+

" (starting from vertex 2)")

g.BFS(2)

Output:

Department of CSE Page 42

Data Structures Lab 2024-2025

Signature of the Faculty

Department of CSE Page 43

Data Structures Lab 2024-2025

10. B.Write a program for BFS & DFS Graph traversal techniques

from a given graph

from collections import defaultdict

This class represents a directed graph using

adjacency list representation

class Graph:

Constructor

def init (self):

Default dictionary to store graph

self.graph = defaultdict(list)

Function to add an edge to graph

def addEdge(self, u, v):

self.graph[u].append(v)

A function used by DFS

def DFSUtil(self, v, visited):

Mark the current node as visited

and print it

visited.add(v)

print(v, end=' ')

Recur for all the vertices

adjacent to this vertex

for neighbour in self.graph[v]:

if neighbour not in visited:

self.DFSUtil(neighbour, visited)

The function to do DFS traversal. It uses

recursive DFSUtil()

def DFS(self, v):

Create a set to store visited vertices

visited = set()

Call the recursive helper function

to print DFS traversal

self.DFSUtil(v, visited)

Department of CSE Page 44

Data Structures Lab 2024-2025

Driver's code

if name == " main ":

g = Graph()

g.addEdge(0, 1)

g.addEdge(0, 2)
g.addEdge(1, 2)

g.addEdge(2, 0)

g.addEdge(2, 3)

g.addEdge(3, 3)

print("Following is Depth First Traversal (starting from vertex

2)")

Function call

g.DFS(2)

Output:

Department of CSE Page 45

Data Structures Lab 2024-2025

Signature of the Faculty

Department of CSE Page 46

Data Structures Lab 2024-2025

11. Write a program to implement Binary Search Tree

Program:

Binary Search Tree

class binarySearchTree:

def init (self,val=None):

self.val = val

self.left = None

self.right = None

def insert(self,val):

check if there is no root

if (self.val == None):

self.val = val

check where to insert

else:

check for duplicate then stop and return
if val == self.val: return 'no duplicates allowed in binary search tree'

check if value to be inserted < currentNode's value

if (val < self.val):
check if there is a left node to currentNode if true then recurse

if(self.left):

self.left.insert(val)
insert where left of currentNode when currentNode.left=None

else: self.left = binarySearchTree(val)

same steps as above here the condition we check is value to be

inserted > currentNode's value

else:
if(self.right):

self.right.insert(val)

else: self.right = binarySearchTree(val)

def breadthFirstSearch(self):

currentNode = self

bfs_list = []

queue = []

queue.insert(0,currentNode)

while(len(queue) > 0):

currentNode = queue.pop()

bfs_list.append(currentNode.val)

if(currentNode.left):

queue.insert(0,currentNode.left)

if(currentNode.right):

queue.insert(0,currentNode.right)

return bfs_list

In order means first left child, then parent, at last right child

def depthFirstSearch_INorder(self):

return self.traverseInOrder([])

Department of CSE Page 47

Data Structures Lab 2024-2025

Pre order means first parent, then left child, at last right child

def depthFirstSearch_PREorder(self):

return self.traversePreOrder([])

Post order means first left child, then right child , at last parent

def depthFirstSearch_POSTorder(self):

return self.traversePostOrder([])

def traverseInOrder(self, lst):

if (self.left):

self.left.traverseInOrder(lst)

lst.append(self.val)

if (self.right):

self.right.traverseInOrder(lst)

return lst

def traversePreOrder(self, lst):

lst.append(self.val)

if (self.left):

self.left.traversePreOrder(lst)

if (self.right):

self.right.traversePreOrder(lst)

return lst

def traversePostOrder(self, lst):

if (self.left):

self.left.traversePostOrder(lst)

if (self.right):

self.right.traversePostOrder(lst)

lst.append(self.val)

return lst

def findNodeAndItsParent(self,val, parent = None):
returning the node and its parent so we can delete the

node and reconstruct the tree from its parent

if val == self.val: return self, parent

if (val < self.val):

if (self.left):
return self.left.findNodeAndItsParent(val, self)

else: return 'Not found'

else:

if (self.right):

return self.right.findNodeAndItsParent(val, self)

else: return 'Not found'

deleteing a node means we have to rearrange some part of the tree

def delete(self,val):
check if the value we want to delete is in the tree
if(self.findNodeAndItsParent(val)=='Not found'): return 'Node
is not in tree'

we get the node we want to delete and its parent-node

from findNodeAndItsParent method
deleteing_node, parent_node = self.findNodeAndItsParent(val)

check how many children nodes does the node we are going

#to delete have by traversePreOrder from the deleteing_node

nodes_effected = deleteing_node.traversePreOrder([])

Department of CSE Page 48

Data Structures Lab 2024-2025

if len(nodes_effected)==1 means, the node to be deleted

doesn't# have any children

so we can just check from its parent node the

position(left or# right) of node we want to delete

and point the position to 'None' i.e node is deleted

if (len(nodes_effected)==1):
if (parent_node.left.val == deleteing_node.val) :
parent_node.left = None
else: parent_node.right = None

return 'Succesfully deleted'

if len(nodes_effected) > 1 which means the node

we are# going to delete has 'children',

so the tree must be rearranged from the deleteing_node

else:

if the node we want to delete doesn't have any
parent# means the node to be deleted is 'root' node

if (parent_node == None):

nodes_effected.remove(deleteing_node.val)

make the 'root' nodee i.e self

value,left,right to None, # this means we need

to implement a new tree again without # the

deleted node

self.left = None

self.right = None

self.val = None

#construction of new tree

for node in nodes_effected:

self.insert(node)

return 'Succesfully deleted'

if the node we want to delete has a parent

traverse from parent_node

nodes_effected = parent_node.traversePreOrder([])

deleting the node
if (parent_node.left == deleteing_node) : parent_node.left
= None

else: parent_node.right = None

removeing the parent_node, deleteing_node and

inserting# the nodes_effected in the tree

nodes_effected.remove(deleteing_node.val)

nodes_effected.remove(parent_node.val)

for node in nodes_effected:

self.insert(node)

Department of CSE Page 49

7

/ \

/ \

4

/ \

0 5 8

9

/ \

13

IN order - useful in sorting the tree in ascending order

print('IN order: ',bst.depthFirstSearch_INorder())

PRE order - useful in reconstructing a tree

print('PRE order:' ,bst.depthFirstSearch_PREorder())

POST order - useful in finding the leaf nodes

print('POST order:', bst.depthFirstSearch_POSTorder())

print(bst.delete(5))

print(bst.delete(9))

print(bst.delete(7))

after deleting

print('IN order: ',bst.depthFirstSearch_INorder())

print('PRE order:' ,bst.depthFirstSearch_PREorder())

print('POST order:', bst.depthFirstSearch_POSTorder())

Data Structures Lab 2024-2025

return 'Successfully deleted'

bst = binarySearchTree()

bst.insert(7)

bst.insert(4)

bst.insert(9)

bst.insert(0)

bst.insert(5)

bst.insert(8)

bst.insert(13)

Output:

Department of CSE Page 50

Data Structures Lab 2024-2025

Department of CSE Page 51

Data Structures Lab 2024-2025

Signature of the Faculty

Department of CSE Page 52

Data Structures Lab 2024-2025

12. Write a program for implementing B+ Tree
import math

Node creation

class Node:

def init (self, order):

self.order = order

self.values = []

self.keys = []

self.nextKey = None

self.parent = None

self.check_leaf = False

Insert at the leaf

def insert_at_leaf(self, leaf, value, key):

if (self.values):

temp1 = self.values

for i in range(len(temp1)):

if (value == temp1[i]):

self.keys[i].append(key)

break

elif (value < temp1[i]):

self.values = self.values[:i] + [value] +

self.values[i:]

self.keys[i:]

self.keys = self.keys[:i] + [[key]] +

break

else:

elif (i + 1 == len(temp1)):

self.values.append(value)

self.keys.append([key])

break

self.values = [value]

self.keys = [[key]]

B plus tree

class BplusTree:

def init (self, order):

self.root = Node(order)

self.root.check_leaf = True

Insert operation

def insert(self, value, key):

value = str(value)

old_node = self.search(value)

old_node.insert_at_leaf(old_node, value, key)

if (len(old_node.values) == old_node.order):

node1 = Node(old_node.order)

Department of CSE Page 53

Data Structures Lab 2024-2025

node1.check_leaf = True

node1.parent = old_node.parent

mid = int(math.ceil(old_node.order / 2)) - 1

node1.values = old_node.values[mid + 1:]

node1.keys = old_node.keys[mid + 1:]

node1.nextKey = old_node.nextKey

old_node.values = old_node.values[:mid + 1]

old_node.keys = old_node.keys[:mid + 1]

old_node.nextKey = node1

self.insert_in_parent(old_node, node1.values[0], node1)

Search operation for different operations

def search(self, value):

current_node = self.root

while(current_node.check_leaf == False):

temp2 = current_node.values

for i in range(len(temp2)):

if (value == temp2[i]):

current_node = current_node.keys[i + 1]

break

elif (value < temp2[i]):

current_node = current_node.keys[i]

break

elif (i + 1 == len(current_node.values)):

current_node = current_node.keys[i + 1]

break

return current_node

Find the node

def find(self, value, key):

l = self.search(value)

for i, item in enumerate(l.values):

if item == value:

if key in l.keys[i]:

return True

else:

return False

return False

Inserting at the parent

def insert_in_parent(self, n, value, ndash):

if (self.root == n):

rootNode = Node(n.order)

rootNode.values = [value]

rootNode.keys = [n, ndash]

self.root = rootNode

n.parent = rootNode

ndash.parent = rootNode

return

Department of CSE Page 54

Data Structures Lab 2024-2025

parentNode = n.parent

temp3 = parentNode.keys

for i in range(len(temp3)):

if (temp3[i] == n):

parentNode.values = parentNode.values[:i] + \

[value] + parentNode.values[i:]

parentNode.keys = parentNode.keys[:i +

1] + [ndash]

+ parentNode.keys[i + 1:]

if (len(parentNode.keys) > parentNode.order):

parentdash = Node(parentNode.order)

parentdash.parent = parentNode.parent

mid = int(math.ceil(parentNode.order / 2)) - 1

parentdash.values = parentNode.values[mid + 1:]

parentdash.keys = parentNode.keys[mid + 1:]

value_ = parentNode.values[mid]

if (mid == 0):

parentNode.values = parentNode.values[:mid +

1]

else:

parentNode.values = parentNode.values[:mid]

parentdash)

Print the tree

def printTree(tree):

lst = [tree.root]

level = [0]

leaf = None

flag = 0

lev_leaf = 0

parentNode.keys = parentNode.keys[:mid + 1]

for j in parentNode.keys:

j.parent = parentNode

for j in parentdash.keys:

j.parent = parentdash

self.insert_in_parent(parentNode, value_,

node1 = Node(str(level[0]) + str(tree.root.values))

while (len(lst) != 0):

x = lst.pop(0)

lev = level.pop(0)

if (x.check_leaf == False):

for i, item in enumerate(x.keys):

print(item.values)

else:

for i, item in enumerate(x.keys):

print(item.values)

if (flag == 0):

lev_leaf = lev

leaf = x

Department of CSE Page 55

Data Structures Lab 2024-2025

flag = 1

record_len = 3

bplustree = BplusTree(record_len)

bplustree.insert('5', '33')

bplustree.insert('15', '21')

bplustree.insert('25', '31')

bplustree.insert('35', '41')

bplustree.insert('45', '10')

printTree(bplustree)

if(bplustree.find('5', '34')):

print("Found")

else:

print("Not found")

Output:

Department of CSE Page 56

Data Structures Lab 2024-2025

Signature of the Faculty

Department of CSE Page 57

Data Structures Lab 2024-2025

Department of CSE Page 58

	PEO1 – ANALYTICAL SKILLS
	PEO2 – TECHNICAL SKILLS
	PEO4 – PROFESSIONAL ETHICS
	Engineering Graduates should possess the following:
	Data Structures Lab 2024-2025
	Program:

	Data Structures Lab 2024-2025 (1)
	Output:

	Data Structures Lab 2024-2025 (2)
	Exercise Programs:

	Data Structures Lab 2024-2025 (3)
	Data Structures Lab 2024-2025 (4)
	Program:

	Data Structures Lab 2024-2025 (5)
	Output:

	Data Structures Lab 2024-2025 (6)
	Exercise Programs:

	Data Structures Lab 2024-2025 (7)
	Method Overloading
	Method overloading in Python
	Achieving method overloading
	Program:

	Data Structures Lab 2024-2025 (8)
	Method overriding - Polymorphism through inheritance
	Program:

	Data Structures Lab 2024-2025 (9)
	Signature of the Faculty

	Data Structures Lab 2024-2025 (10)
	Linear Search Program:

	Data Structures Lab 2024-2025 (11)
	Data Structures Lab 2024-2025 (12)
	Exercise Programs:

	Data Structures Lab 2024-2025 (13)
	Data Structures Lab 2024-2025 (14)
	Exercise Programs:

	Data Structures Lab 2024-2025 (15)
	Quick Sort Program:
	Signature of the Faculty

	Data Structures Lab 2024-2025 (16)
	Stack Program:

	Data Structures Lab 2024-2025 (17)
	Output:

	Data Structures Lab 2024-2025 (18)
	Data Structures Lab 2024-2025 (19)
	Queue Program:

	Data Structures Lab 2024-2025 (20)
	Output:

	Data Structures Lab 2024-2025 (21)
	Signature of the Faculty

	Data Structures Lab 2024-2025 (22)
	Program:

	Data Structures Lab 2024-2025 (23)
	Data Structures Lab 2024-2025 (24)
	Data Structures Lab 2024-2025 (25)
	Data Structures Lab 2024-2025 (26)
	Output:

	Data Structures Lab 2024-2025 (27)
	Signature of the Faculty

	Data Structures Lab 2024-2025 (28)
	Exercise Programs:

	Data Structures Lab 2024-2025 (29)
	Data Structures Lab 2024-2025 (30)
	Program:

	Data Structures Lab 2024-2025 (31)
	Data Structures Lab 2024-2025 (32)
	Data Structures Lab 2024-2025 (33)
	Data Structures Lab 2024-2025 (34)
	Output:

	Data Structures Lab 2024-2025 (35)
	Signature of the Faculty

	Data Structures Lab 2024-2025 (36)
	Exercise Programs:

	Data Structures Lab 2024-2025 (37)
	Data Structures Lab 2024-2025 (38)
	Data Structures Lab 2024-2025 (39)
	Output:

	Data Structures Lab 2024-2025 (40)
	Signature of the Faculty

	Data Structures Lab 2024-2025 (41)
	Output:

	Data Structures Lab 2024-2025 (42)
	Signature of the Faculty

	Data Structures Lab 2024-2025 (43)
	Program:

	Data Structures Lab 2024-2025 (44)
	Data Structures Lab 2024-2025 (45)
	Data Structures Lab 2024-2025 (46)
	Output:

	Data Structures Lab 2024-2025 (47)
	Data Structures Lab 2024-2025 (48)
	Signature of the Faculty

	Data Structures Lab 2024-2025 (49)
	Data Structures Lab 2024-2025 (50)
	Signature of the Faculty

	Data Structures Lab 2024-2025 (51)

